All Issue

2016 Vol.20, Issue 4

Original Article

December 2016. pp. 172-186
Abstract
References
1
Lekholm U, Adell R, Lindhe J, et al. Marginal tissue reactions at osseointegrated titanium fixtures. (II) A cross-sectional retrospective study. Int J Oral Maxillofac Surg. 1986; 15: 53-61.
10.1016/S0300-9785(86)80011-4
2
McAllister BS, Haghighat K. Bone augmentation techniques. J Periodontol. 2007; 78: 377-396.
10.1902/jop.2007.06004817335361
3
Liu J, Kerns DG. Mechanisms of guided bone regeneration: a review. Open Dent J. 2014; 8: 56-65.
10.2174/187421060140801005624894890PMC4040931
4
Bottino MC, Thomas V, Schmidt G, et al. Recent advances in the development of GTR/GBR membranes for periodontal regeneration--a materials perspective. Dent Mater. 2012; 28: 703-721.
10.1016/j.dental.2012.04.02222592164
5
Abou Neel EA, Bozec L, Knowles JC, et al. Collagen--emerging collagen based therapies hit the patient. Adv Drug Deliv Rev. 2013; 65: 429-456.
10.1016/j.addr.2012.08.01022960357
6
Gentile P, Chiono V, Tonda-Turo C, et al. Polymeric membranes for guided bone regeneration. Biotechnol J. 2011; 6: 1187-1197.
10.1002/biot.20110029421932249
7
Mo XM, Xu CY, Kotaki M, et al. Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials. 2004; 25: 1883-1890.
10.1016/j.biomaterials.2003.08.042
8
Xu C, Inai R, Kotaki M, et al. Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Eng. 2004; 10: 1160-1168.
10.1089/ten.2004.10.116015363172
9
Kwon IK, Kidoaki S, Matsuda T. Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials 2005; 26: 3929-3939.
10.1016/j.biomaterials.2004.10.00715626440
10
Luu YK, Kim K, Hsiao BS, et al. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J Control Release. 2003; 89: 341-353.
10.1016/S0168-3659(03)00097-X
11
Seol YJ, Kim KH, Kim IA, et al. Osteoconductive and degradable electrospun nonwoven poly (epsilon-caprolactone)/CaO-SiO2 gel composite fabric. J Biomed Mater Res A. 2010; 94: 649-659.
20213814
12
Wiltfang J, Merten HA, Peters JH. Comparative study of guided bone regeneration using absorbable and permanent barrier membranes: a histologic report. Int J Oral Maxillofac Implants. 1998; 13: 416-421.
9638014
13
Kasaj A, Reichert C, Gotz H, et al. In vitro evaluation of various bioabsorbable and nonresorbable barrier membranes for guided tissue regeneration. Head Face Med. 2008; 4: 22.
10.1186/1746-160X-4-2218854011PMC2576055
14
Gielkens PF, Schortinghuis J, de Jong JR, et al. Vivosorb, Bio-Gide, and Gore-Tex as barrier membranes in rat mandibular defects: an evaluation by microradiography and micro-CT. Clin Oral Implants Res. 2008; 19: 516-521.
10.1111/j.1600-0501.2007.01511.x18416728
15
Ignjatovic N, Wu V, Ajdukovic Z, et al. Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues. Mater Sci Eng C Mater Biol Appl. 2016; 60: 357-364.
10.1016/j.msec.2015.11.06126706541PMC4780868
16
Huhtala A, Pohjonen T, Salminen L, et al. In vitro biocompatibility of degradable biopolymers in cell line cultures from various ocular tissues: extraction studies. J Mater Sci Mater Med. 2008; 19: 645-649.
10.1007/s10856-007-3192-517619963
17
Owen GR, Jackson JK, Chehroudi B, et al. An in vitro study of plasticized poly(lactic-co-glycolic acid) films as possible guided tissue regeneration membranes: material properties and drug release kinetics. J Biomed Mater Res A. 2010; 95: 857-869.
10.1002/jbm.a.3286520824651
18
Kang YM, Kim KH, Seol YJ, et al. Evaluations of osteogenic and osteoconductive properties of a non-woven silica gel fabric made by the electrospinning method. Acta Biomater. 2009; 5: 462-469.
10.1016/j.actbio.2008.07.00418676190
19
Kim HW, Kim HE. Nanofiber generation of hydroxyapatite and fluor-hydroxyapatite bioceramics. J Biomed Mater Res B Appl Biomater. 2006; 77: 323-328.
10.1002/jbm.b.3037616278845
20
Lao L, Wang Y, Zhu Y, et al. Poly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering. J Mater Sci Mater Med. 2011; 22: 1873-1884.
10.1007/s10856-011-4374-821681656
21
Rhee SH, Choi JY, Kim HM. Preparation of a bioactive and degradable poly(epsilon-caprolactone)/ silica hybrid through a sol-gel method. Biomaterials. 2002; 23: 4915-4921.
10.1016/S0142-9612(02)00251-X
22
Sun H, Mei L, Song C, et al. The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials. 2006; 27: 1735-1740.
10.1016/j.biomaterials.2005.09.01916198413
23
Cho SB, Miyaji F, Kokubo T, et al. Apatite-forming ability of silicate ion dissolved from silica gels. J Biomed Mater Res. 1996; 32: 375-381.
10.1002/(SICI)1097-4636(199611)32:3<375::AID-JBM10>3.0.CO;2-G
24
de Santana RB, de Mattos CM, Francischone CE, et al. Superficial topography and porosity of an absorbable barrier membrane impacts soft tissue response in guided bone regeneration. J Periodontol. 2010; 81: 926-933.
10.1902/jop.2010.09059220380512
25
Chvapil M, Holusa R, Kliment K, et al. Some chemical and biological characteristics of a new collagen-polymer compound material. J Biomed Mater Res. 1969; 3: 315-332.
10.1002/jbm.8200302115793837
Information
  • Publisher :The Korean Academy of Oral & Maxillofacial Implantology
  • Publisher(Ko) :대한구강악안면임플란트학회
  • Journal Title :Implantology
  • Journal Title(Ko) :대한구강악안면임플란트학회지
  • Volume : 20
  • No :4
  • Pages :172-186
  • Received Date : 2016-11-15
  • Revised Date : 2016-11-25
  • Accepted Date : 2016-11-25